ADVANCED ALA
Mechanism of alpha-lipoic acid-induced apoptosis of lung cancer cells.
Choi SY1, Yu JH, Kim H. Ann N Y Acad Sci. 2009 Aug;1171:149-55. doi: 10.1111/j.1749-6632.2009.04708. .https://www.ncbi.nlm.nih.gov/pubmed/19723049
Impact of therapy with alpha-lipoic acid (ALA) on the oxidative stress in the controlled NIDDM: a possible preventive way against the organ dysfunction? Gianturco V1, Bellomo A, D'Ottavio E, Formosa V, Iori A, Mancinella M, Troisi G, Marigliano V. Arch Gerontol Geriatr. 2009;49 Suppl 1:129-33. doi: 10.1016/j.archger.2009.09.022.
https://www.ncbi.nlm.nih.gov/pubmed/19836626
Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease.
Maczurek A1, Hager K, Kenklies M, Sharman M, Martins R, Engel J, Carlson DA, Münch G. Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1463-70. doi: 10.1016/j.addr.2008.04.015. Epub 2008 Jul 4.
https://www.ncbi.nlm.nih.gov/pubmed/18655815
Lipoic acid: a novel therapeutic approach for multiple sclerosis and other chronic inflammatory diseases of the CNS.
Salinthone S1, Yadav V, Bourdette DN, Carr DW. Endocr Metab Immune Disord Drug Targets. 2008 Jun;8(2):132-42. https://www.ncbi.nlm.nih.gov/pubmed/18537699
Lipoic acid as a novel treatment for Alzheimer's disease and related dementias.
Holmquist L1, Stuchbury G, Berbaum K, Muscat S, Young S, Hager K, Engel J, Münch G. Pharmacol Ther. 2007 Jan;113(1):154-64. https://www.ncbi.nlm.nih.gov/pubmed/16989905
Alpha-lipoic acid inhibits TNF-alpha-induced apoptosis in human bone marrow stromal cells.
Byun CH1, Koh JM, Kim DK, Park SI, Lee KU, Kim GS. J Bone Miner Res. 2005 Jul;20(7):1125-35. https://www.ncbi.nlm.nih.gov/pubmed/15940365
Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress.
Smith AR1, Shenvi SV, Widlansky M, Suh JH, Hagen TM. Curr Med Chem. 2004 May;11(9):1135-46. https://www.ncbi.nlm.nih.gov/pubmed/15134511
Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Packer L1, Tritschler HJ, Wessel K. Free Radic Biol Med. 1997;22(1-2):359-78. https://www.ncbi.nlm.nih.gov/pubmed/8958163
Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Nagamatsu M1, Nickander KK, Schmelzer JD, Raya A, Wittrock DA, Tritschler H, Low PA. Diabetes Care. 1995 Aug;18(8):1160-7. https://www.ncbi.nlm.nih.gov/pubmed/7587852
Potential Protective Role of Rutin and Alpha-lipoic Acid Against Cisplatin-induced Nephrotoxicity in Rats.
Zaazaa AM, Motelp BAAE, Aniss NN. Pak J Biol Sci. 2019 Jan;22(8):361-371. doi: 10.3923/pjbs.2019.361.371. https://www.ncbi.nlm.nih.gov/pubmed/31930824
Lipoic acid a multi-level molecular inhibitor of tumorigenesis.
Farhat D1, Lincet H2. Biochim Biophys Acta Rev Cancer. 2019 Nov 1;1873(1):188317. doi: 10.1016/j.bbcan.2019.188317. https://www.ncbi.nlm.nih.gov/pubmed/31669587
INFLAM REDUX
Memory and Brain Amyloid and Tau Effects of a Bioavailable Form of Curcumin in Non-Demented Adults: A Double-Blind, Placebo-Controlled 18-Month Trial. Gary W. Small M.D., Prabha Siddarth Ph.D., Zhaoping Li M.D., Ph.D., Karen J. Miller Ph.D., Linda Ercoli Ph.D., Natacha D. Emerson M.A., Jacqueline Martinez M.B.A., M.S., Koon-Pong Wong Ph.D., Jie Liu Ph.D., David A. Merrill M.D., Ph.D., Stephen T. Chen M.D., Susanne M. Henning Ph.D., R.D., Nagichettiar Satyamurthy Ph.D., Sung-Cheng Huang D.Sc., David Heber M.D., Ph.D., Jorge R. Barrio Ph.D. The American Journal of Geriatric Psychiatry, Volume 26, Issue 3, March 2018, Pages 266-277. https://www.sciencedirect.com/science/article/pii/S1064748117305110?via%3Dihub#!
Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Ritesh Kotecha, Akiyoshi Takami, and J. Luis Espinoza. Oncotarget. 2016 Aug 9; 7(32): 52517–52529. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5239570/
Chronic Inflammation, National Cancer Institute https://www.cancer.gov/about-cancer/causes-prevention/risk/chronic-inflammation
Prevention and treatment of cancer targeting chronic inflammation: research progress, potential agents, clinical studies and mechanisms. Zhang Y, Kong W, Jiang J. Sci China Life Sci. 2017 Jun;60(6):601-616. https://www.ncbi.nlm.nih.gov/pubmed/28639101
Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression Jae-Hoon Jeong, Jee Young An, Yong Tae Kwon, Juong G. Rhee, and Yong J. Lee. J Cell Biochem. 2009 Jan 1; 106(1): 73–82. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736626/
Quercetin, Inflammation and Immunity. Yao Li, Jiaying Yao, Chunyan Han, Jiaxin Yang, Maria Tabassum Chaudhry, Shengnan Wang, Hongnan Liu, and Yulong Yin. Nutrients. 2016 Mar; 8(3): 167. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808895/
Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-kappaB in mouse macrophages. Lo AH1, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. Carcinogenesis. 2002 Jun;23(6):983-91. https://www.ncbi.nlm.nih.gov/pubmed/12082020
Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Surh YJ. Food Chem Toxicol. 2002 Aug;40(8):1091-7. https://www.ncbi.nlm.nih.gov/pubmed/12067569
Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Farmaco. 2001 Sep;56(9):683-7. https://www.ncbi.nlm.nih.gov/pubmed/11680812
Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. Manna SK, Mukhopadhyay A, Aggarwal BB. J Immunol. 2000 Jun 15;164(12):6509-19. https://www.ncbi.nlm.nih.gov/pubmed/10843709
Mechanism of antiinflammatory actions of curcumine and boswellic acids. Ammon HP, Safayhi H, Mack T, Sabieraj J. J Ethnopharmacol. 1993 Mar;38(2-3):113-9. https://www.ncbi.nlm.nih.gov/pubmed/8510458
Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids. Kiuchi F, Iwakami S, Shibuya M, Hanaoka F, Sankawa U. Chem Pharm Bull (Tokyo). 1992 Feb;40(2):387-91. https://www.ncbi.nlm.nih.gov/pubmed/1606634
Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Satoskar RR, Shah SJ, Shenoy SG. Int J Clin Pharmacol Ther Toxicol. 1986 Dec;24(12):651-4. https://www.ncbi.nlm.nih.gov/pubmed/3546166
α-Pinene (Boswellia) Induces Apoptotic Cell Death via Caspase Activation in Human Ovarian Cancer Cells. Hou J, Zhang Y2, Zhu Y, Zhou B, Ren C, Liang S, Guo Y. Med Sci Monit. 2019 Sep 4;25:6631-6638. https://www.ncbi.nlm.nih.gov/pubmed/31482864
Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Chun KS, Keum YS, Han SS, Song YS, Kim SH, Surh YJ. Carcinogenesis. 2003 Sep;24(9):1515-24. https://www.ncbi.nlm.nih.gov/pubmed/12844482
Recent advances in natural therapeutic approaches for the treatment of cancer. Wang XJ, Chen JY, Fu LQ, Yan MJ. J Chemother. 2020 Jan 13:1-13. https://www.ncbi.nlm.nih.gov/pubmed/31928332
Epigenetics/epigenomics and prevention by curcumin of early stages of inflammatory-driven colon cancer. Wu R, Wang L1,2, Yin R, Hudlikar R, Li S, Kuo HD, Peter R, Sargsyan D, Guo Y, Liu X, Kong AT. Mol Carcinog. 2020 Feb;59(2):227-236. https://www.ncbi.nlm.nih.gov/pubmed/31820492
Curcumin - A Novel Therapeutic Agent In The Prevention Of Colorectal Cancer. Gupta MK, Vadde R, Sarojamma V. Curr Drug Metab. 2019 Oct 7. https://www.ncbi.nlm.nih.gov/pubmed/31589120
Curcumin induces cell apoptosis in human chondrosarcoma through extrinsic death receptor pathway International Immunopharmacology. Volume 13, Issue 2, June 2012, Pages 163-169. https://pubmed.ncbi.nlm.nih.gov/22522053/
Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Hesari A, Azizian M, Sheikhi A, Nesaei A, Sanaei S, Mahinparvar N, Derakhshani M, Hedayt P, Ghasemi F, Mirzaei H. Int J Cancer. 2019 Mar 15;144(6):1215-1226. https://www.ncbi.nlm.nih.gov/pubmed/30362511
The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway. Hamzehzadeh L, Atkin SL, Majeed M, Butler AE, Sahebkar A. J Cell Physiol. 2018 Oct;233(10):6530-6537. https://www.ncbi.nlm.nih.gov/pubmed/29693253
Curcumin ameliorates palmitate-induced inflammation in skeletal muscle cells by regulating JNK/NF-kB pathway and ROS production. Sadeghi A, Rostamirad A, Seyyedebrahimi S, Meshkani R. Inflammopharmacology. 2018 Oct;26(5):1265-1272. https://www.ncbi.nlm.nih.gov/pubmed/29644554
DNA methylome and transcriptome alterations and cancer prevention by curcumin in colitis-accelerated colon cancer in mice. Guo Y, Wu R, Gaspar JM, Sargsyan D, Su ZY, Zhang C, Gao L, Cheng D, Li W, Wang C, Yin R, Fang M, Verzi MP, Hart RP, Kong AN. Carcinogenesis. 2018 May 3;39(5):669-680. https://www.ncbi.nlm.nih.gov/pubmed/29547900
Inhibition of hepatocellular carcinoma tumorigenesis by curcumin may be associated with CDKN1A and CTGF. Zeng Y, Shen Z, Gu W, Wu M. Gene. 2018 Apr 20;651:183-193. https://www.ncbi.nlm.nih.gov/pubmed/29408622
Chemopreventive and Antitumor Efficacy of Curcumin in a Spontaneously Developing Hen Ovarian Cancer Model. Sahin K, Orhan C, Tuzcu M, Sahin N, Tastan H, Özercan İH, Güler O, Kahraman N, Kucuk O, Ozpolat B. Cancer Prev Res (Phila). 2018 Jan;11(1):59-67. https://www.ncbi.nlm.nih.gov/pubmed/29089332
Anti-tumor bioactivities of curcumin on mice loaded with gastric carcinoma. Wang XP, Wang QX, Lin HP, Chang N. Food Funct. 2017 Sep 20;8(9):3319-3326. https://www.ncbi.nlm.nih.gov/pubmed/28848967
Curcumin: the spicy modulator of breast carcinogenesis. Banik U, Parasuraman S, Adhikary AK, Othman NH. J Exp Clin Cancer Res. 2017 Jul 19;36(1):98. https://www.ncbi.nlm.nih.gov/pubmed/28724427
The effects of turmeric (curcumin) on tumor suppressor protein (p53) and estrogen receptor (ERα) in breast cancer cells. Hallman K, Aleck K, Dwyer B, Lloyd V, Quigley M, Sitto N, Siebert AE, Dinda S. Breast Cancer (Dove Med Press). 2017 Mar 10;9:153-161. https://www.ncbi.nlm.nih.gov/pubmed/28331366
Curcumin: a Polyphenol with Molecular Targets for Cancer Control. Qadir MI, Naqvi ST, Muhammad SA. Asian Pac J Cancer Prev. 2016;17(6):2735-9. https://www.ncbi.nlm.nih.gov/pubmed/27356682
Curcumin-albumin conjugates as an effective anti-cancer agent with immunomodulatory properties. Aravind SR, Krishnan LK. Int Immunopharmacol. 2016 May;34:78-85. https://www.ncbi.nlm.nih.gov/pubmed/26927614
Prevention from radiation damage by natural products. Fischer N, Seo EJ, Efferth T. Phytomedicine. 2018 Aug 1;47:192-200. https://www.ncbi.nlm.nih.gov/pubmed/30166104
A novel lecithin-based delivery form of Boswellic acids as complementary treatment of radiochemotherapy-induced cerebral edema in patients with glioblastoma multiforme: a longitudinal pilot experience. Di Pierro F, Simonetti G, Petruzzi A, Bertuccioli A, Botta L, Bruzzone MG, Cuccarini V, Fariselli L, Lamperti E. J Neurosurg Sci. 2019 Jun;63(3):286-291. https://www.ncbi.nlm.nih.gov/pubmed/31096725
Boswellic acid has anti-inflammatory effects and enhances the anticancer activities of Temozolomide and Afatinib, an irreversible ErbB family blocker, in human glioblastoma cells. Barbarisi M, Barbarisi A, De Sena G, Armenia E, Aurilio C, Libutti M, Iaffaioli RV, Botti G, Maurea N, Quagliariello V. Phytother Res. 2019 Jun;33(6):1670-1682. https://www.ncbi.nlm.nih.gov/pubmed/30924205
Boswellia frereana suppresses HGF-mediated breast cancer cell invasion and migration through inhibition of c-Met signalling. Parr C, Ali AY. J Transl Med. 2018 Oct 12;16(1):281. https://www.ncbi.nlm.nih.gov/pubmed/30314527
Combined acetyl-11-keto-β-boswellic acid and radiation treatment inhibited glioblastoma tumor cells. Conti S, Vexler A, Edry-Botzer L, Kalich-Philosoph L, Corn BW, Shtraus N, Meir Y, Hagoel L, Shtabsky A, Marmor S, Earon G, Lev-Ari S. PLoS One. 2018 Jul 3;13(7). https://www.ncbi.nlm.nih.gov/pubmed/29969452
Boswellic Acid Improves Cognitive Function in a Rat Model Through Its Antioxidant Activity: - Neuroprotective effect of Boswellic acid. Ebrahimpour S, Fazeli M, Mehri S, Taherianfard M, Hosseinzadeh H. J Pharmacopuncture. 2017 Mar;20(1):10-17. https://www.ncbi.nlm.nih.gov/pubmed/28392957
Pharmacological evidences for cytotoxic and antitumor properties of Boswellic acids from Boswellia serrata. Khan MA, Ali R2, Parveen R, Najmi AK, Ahmad S. J Ethnopharmacol. 2016 Sep 15;191:315-323. https://www.ncbi.nlm.nih.gov/pubmed/27346540
Prediction of anticancer property of bowsellic acid derivatives by quantitative structure activity relationship analysis and molecular docking study. Satpathy R, Guru RK, Behera R, Nayak B. J Pharm Bioallied Sci. 2015 Jan-Mar;7(1):21-5. https://www.ncbi.nlm.nih.gov/pubmed/25709332
Acetyl-11-keto-β-boswellic acid (AKBA) inhibits human gastric carcinoma growth through modulation of the Wnt/β-catenin signaling pathway. Zhang YS, Xie JZ, Zhong JL, Li YY, Wang RQ, Qin YZ, Lou HX, Gao ZH, Qu XJ. Biochim Biophys Acta. 2013 Jun;1830(6):3604-15. https://www.ncbi.nlm.nih.gov/pubmed/23500016
Enhanced anticancer potential of encapsulated solid lipid nanoparticles of TPD: a novel triterpenediol from Boswellia serrata. Bhushan S, Kakkar V, Pal HC, Guru SK, Kumar A, Mondhe DM, Sharma PR, Taneja SC, Kaur IP, Singh J, Saxena AK. Mol Pharm. 2013 Jan 7;10(1):225-35. https://www.ncbi.nlm.nih.gov/pubmed/23237302
Acetyl-11-keto-β-boswellic acid (AKBA) Attenuates Oxidative Stress, Inflammation, Complement Activation and Cell Death in Brain Endothelial Cells Following OGD/Reperfusion. Ahmad S, Khan SA, Kindelin A, Mohseni T, Bhatia K, Hoda MN, Ducruet AF. Neuromolecular Med. 2019 Dec;21(4):505-516. https://www.ncbi.nlm.nih.gov/pubmed/31515728
Anti-inflammatory and anti-arthritic effects of methanol extract of the stem bark of Boswellia dalzielii Hutch (Burseraceae) in rats. Mbiantcha M, Almas J, Atsamo AD, Ateufack G, Shabana SU, Bomba Tatsinkou DF, Yousseu Nana W, Nida D. Inflammopharmacology. 2018 Dec;26(6):1383-1398. https://www.ncbi.nlm.nih.gov/pubmed/29948494
Boswellia serrata has beneficial anti-inflammatory and antioxidant properties in a model of experimental colitis. Hartmann RM1, Fillmann HS, Martins MI, Meurer L, Marroni NP. Phytother Res. 2014 Sep;28(9):1392-8. https://www.ncbi.nlm.nih.gov/pubmed/24619538
Plant food supplements with anti-inflammatory properties: a systematic review (II). Di Lorenzo C, Dell'Agli M, Badea M, Dima L, Colombo E, Sangiovanni E, Restani P, Bosisio E. Crit Rev Food Sci Nutr. 2013;53(5):507-16. https://www.ncbi.nlm.nih.gov/pubmed/23391017
Boswellia serrata, a potential antiinflammatory agent: an overview. Siddiqui MZ. Indian J Pharm Sci. 2011 May;73(3):255-61. https://www.ncbi.nlm.nih.gov/pubmed/22457547
Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers. Yadav VR, Prasad S, Sung B, Gelovani JG, Guha S, Krishnan S, Aggarwal BB. Int J Cancer. 2012 May 1;130(9):2176-84. https://www.ncbi.nlm.nih.gov/pubmed/21702037
Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. Delmas D, Lançon A, Colin D, Jannin B, Latruffe N. Curr Drug Targets. 2006 Apr;7(4):423-42. https://www.ncbi.nlm.nih.gov/pubmed/16611030
Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Anticancer Res. 2004 Sep-Oct;24(5A):2783-840. https://www.ncbi.nlm.nih.gov/pubmed/15517885
Resveratrol, a natural chemopreventive agent against degenerative diseases. Ignatowicz E, Baer-Dubowska W. Pol J Pharmacol. 2001 Nov-Dec;53(6):557-69. https://www.ncbi.nlm.nih.gov/pubmed/11985329
Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. Signorelli P, Ghidoni R. J Nutr Biochem. 2005 Aug;16(8):449-66. https://www.ncbi.nlm.nih.gov/pubmed/16043028
Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Clément MV, Hirpara JL, Chawdhury SH, Pervaiz S. Blood. 1998 Aug 1;92(3):996-1002. https://www.ncbi.nlm.nih.gov/pubmed/9680369
Resveratrol modulation of signal transduction in apoptosis and cell survival: a mini-review. Fulda S, Debatin KM. Cancer Detect Prev. 2006;30(3):217-23. https://www.ncbi.nlm.nih.gov/pubmed/16872757
Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets. Kundu JK, Shin YK, Surh YJ. Biochem Pharmacol. 2006 Nov 30;72(11):1506-15. https://www.ncbi.nlm.nih.gov/pubmed/16999939
Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-kappaB in mouse skin by blocking IkappaB kinase activity. Kundu JK, Shin YK, Kim SH, Surh YJ. Carcinogenesis. 2006 Jul;27(7):1465-74. https://www.ncbi.nlm.nih.gov/pubmed/16474181
Rutin and curcumin reduce inflammation, triglyceride levels and ADA activity in serum and immune cells in a model of hyperlipidemia. Manzoni AG, Passos DF, da Silva JLG, Bernardes VM, Bremm JM, Jantsch MH, de Oliveira JS, Mann TR, de Andrade CM, Leal DBR. Blood Cells Mol Dis. 2019 May;76:13-21. https://www.ncbi.nlm.nih.gov/pubmed/30679022
Rutin inhibits carfilzomib-induced oxidative stress and inflammation via the NOS-mediated NF-κB signaling pathway. Al-Harbi NO, Imam F, Al-Harbi MM, Al-Shabanah OA, Alotaibi MR, As Sobeai HM, Afzal M, Kazmi I, Al Rikabi AC. Inflammopharmacology. 2019 Aug;27(4):817-827. https://www.ncbi.nlm.nih.gov/pubmed/30600471
Rutin attenuates neurobehavioral deficits, oxidative stress, neuro-inflammation and apoptosis in fluoride treated rats. Nkpaa KW, Onyeso GI. Neurosci Lett. 2018 Aug 24;682:92-99. https://www.ncbi.nlm.nih.gov/pubmed/29908257
Enhancement of anti-inflammatory activity of polyphenolic flavonoid rutin by encapsulation. Jantrawut P, Phongpradist R, Muller M, Viernstein H. Pak J Pharm Sci. 2017 Sep;30(5):1521-1527. https://www.ncbi.nlm.nih.gov/pubmed/29084668
Treatment with Rutin - A Therapeutic Strategy for Neutrophil-Mediated Inflammatory and Autoimmune Diseases: - Anti-inflammatory Effects of Rutin on Neutrophils. Nikfarjam BA, Adineh M, Hajiali F, Nassiri-Asl M. J Pharmacopuncture. 2017 Mar;20(1):52-56. https://www.ncbi.nlm.nih.gov/pubmed/28392963
Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Jessy Moore, Michael Yousef, and Evangelia Tsiani. Nutrients. 2016 Nov; 8(11): 731. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133115/
Effect of Some Clinically Used Proteolytic Enzymes on Inflammation in Rats. A. H. M. Viswanatha Swamy* and P A. Patil. Indian J Pharm Sci. 2008 Jan-Feb; 70(1): 114–117. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852049/
ADVANCED GLUTATHIONE
The importance of glutathione in human disease. Townsend DM, Tew KD, Tapiero H. Biomed Pharmacother. 2003 May-Jun;57(3-4):145-55. https://www.ncbi.nlm.nih.gov/pubmed/12818476
The role of glutathione in aging and cancer. Richie JP Jr . Exp Gerontol. 1992 Sep-Dec;27(5-6):615-26. https://www.ncbi.nlm.nih.gov/pubmed/1426093
Glutathione and its role in cellular functions. Sies H. Free Radic Biol Med. 1999 Nov;27(9-10):916-21. https://www.ncbi.nlm.nih.gov/pubmed/10569624
Glutathione: overview of its protective roles, measurement, and biosynthesis. Forman HJ, Zhang H, Rinna A. Mol Aspects Med. 2009 Feb-Apr;30(1-2):1-12. https://www.ncbi.nlm.nih.gov/pubmed/18796312
Glutathione transferases. Hayes JD, Flanagan JU, Jowsey IR. Annu Rev Pharmacol Toxicol. 2005;45:51-88. https://www.ncbi.nlm.nih.gov/pubmed/15822171
Glutathione! Joseph Pizzorno, ND, Editor in Chief. Integr Med (Encinitas). 2014 Feb; 13(1): 8–12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684116/
Glutathione in foods listed in the national cancer institute's health habits and history food frequency questionnaire Dean P. Jones, Ralph J. Coates, Elaine W. Flagg, John W. Eley, Gladys Block, Raymond S. Greenberg, Elaine W. Gunter & Bethany Jackson. J Nutrition and Cancer Volume 17, 1992, issue 1 https://www.tandfonline.com/doi/abs/10.1080/01635589209514173?journalCode=hnuc20
Glutathione. WebMD https://www.webmd.com/vitamins-and-supplements/glutathione-uses-risks#1-2
Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Sinha R, Sinha I, Calcagnotto A, Trushin N, Haley JS, Schell TD, Richie JP Jr. Eur J Clin Nutr. 2018 Jan;72(1):105-111. https://www.ncbi.nlm.nih.gov/pubmed/28853742
Effect of whey protein isolate on intracellular glutathione and oxidant-induced cell death in human prostate epithelial cells. Kent KD1, Harper WJ, Bomser JA. Toxicol In Vitro. 2003 Feb;17(1):27-33. https://www.ncbi.nlm.nih.gov/pubmed/12537959
Glutathione: a key player in autoimmunity. Perricone C, De Carolis C, Perricone R. Autoimmun Rev. 2009 Jul;8(8):697-701. https://www.ncbi.nlm.nih.gov/pubmed/19393193
Glutathione Peroxidase 1 Activity and Cardiovascular Events in Patients with Coronary Artery Disease Stefan Blankenberg, M.D., Hans J. Rupprecht, M.D., Christoph Bickel, M.D., Michael Torzewski, M.D., Gerd Hafner, M.D., Laurence Tiret, Ph.D., Marek Smieja, M.D., Ph.D., François Cambien, M.D., Jürgen Meyer, M.D., and Karl J. Lackner, M.D. for the AtheroGene Investigators. N Engl J Med October 23, 2003; 349:1605-1613 https://www.nejm.org/doi/full/10.1056/NEJMoa030535#t=article
Efficacy of glutathione for the treatment of nonalcoholic fatty liver disease: an open-label, single-arm, multicenter, pilot study. Honda Y, Kessoku T, Sumida Y, Kobayashi T, Kato T, Ogawa Y, Tomeno W, Imajo K, Fujita K, Yoneda M, Kataoka K, Taguri M, Yamanaka T, Seko Y, Tanaka S, Saito S, Ono M, Oeda S, Eguchi Y, Aoi W, Sato K, Itoh Y, Nakajima A. BMC Gastroenterol. 2017 Aug 8;17(1):96. https://www.ncbi.nlm.nih.gov/pubmed/28789631
Reduced glutathione system: role in cancer development, prevention and treatment (review). Locigno R, Castronovo V. Int J Oncol. 2001 Aug;19(2):221-36. https://www.ncbi.nlm.nih.gov/pubmed/11445833
Glutathione in the prevention of cisplatin induced toxicities. A prospectively randomized pilot trial in patients with head and neck cancer and non small cell lung cancer. Schmidinger M1, Budinsky AC, Wenzel C, Piribauer M, Brix R, Kautzky M, Oder W, Locker GJ, Zielinski CC, Steger GG. Wien Klin Wochenschr. 2000 Jul 28;112(14):617-23. https://www.ncbi.nlm.nih.gov/pubmed/11008323
Prevention of oxaliplatin-related neurotoxicity by glutathione infusions. Takimoto N, Sugawara S, Iida A, Sakakibara T, Mori K, Sugiura M, Yamamoto M, Tanaka M, Hayakawa T, Yamamura K, Adachi M. Gan To Kagaku Ryoho. 2008 Dec;35(13):2373-6. https://www.ncbi.nlm.nih.gov/pubmed/19098405
Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. Cascinu S, Catalano V, Cordella L, Labianca R, Giordani P, Baldelli AM, Beretta GD, Ubiali E, Catalano G. J Clin Oncol. 2002 Aug 15;20(16):3478-83. https://www.ncbi.nlm.nih.gov/pubmed/12177109
Protective role of glutathione and glutathione transferases in mutagenesis and carcinogenesis. Ketterer B. Mutat Res. 1988 Dec;202(2):343-61. https://www.ncbi.nlm.nih.gov/pubmed/3057366
Glutathione chemoprotection therapy against CDDP-induced neurotoxicity in patients with invasive bladder cancer. Sumiyoshi Y, Hashine K, Kasahara K, Karashima T. Gan To Kagaku Ryoho. 1996 Sep;23(11):1506-8. https://www.ncbi.nlm.nih.gov/pubmed/8854791
ADVANCE-D
Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Autier P, Gandini S. Arch Intern Med. 2007 Sep 10;167(16):1730-7. https://www.ncbi.nlm.nih.gov/pubmed/17846391
Vitamin D, Cancer Risk, and Mortality. Tagliabue E, Raimondi S, Gandini S. Adv Food Nutr Res. 2015;75:1-52. https://www.ncbi.nlm.nih.gov/pubmed/26319903
The effects of vitamin D deficiency and insufficiency on the endocrine and paracrine systems. Alpert PT, Shaikh U. Biol Res Nurs. 2007 Oct;9(2):117-29. https://www.ncbi.nlm.nih.gov/pubmed/17909164
Vitamin D Supplementation and Survival of Patients with Non-small Cell Lung Cancer: A Randomized, Double-Blind, Placebo-Controlled Trial. Akiba T, Morikawa T, Odaka M, Nakada T, Kamiya N, Yamashita M, Yabe M, Inagaki T, Asano H, Mori S, Tsukamoto Y, Urashima M. Clin Cancer Res. 2018 Sep 1;24(17):4089-4097. https://www.ncbi.nlm.nih.gov/pubmed/30018118
Vitamin D in cancer chemoprevention. Giammanco M, Di Majo D, La Guardia M, Aiello S, Crescimannno M, Flandina C, Tumminello FM, Leto G. Pharm Biol. 2015;53(10):1399-434. https://www.ncbi.nlm.nih.gov/pubmed/25856702
Why the optimal requirement for Vitamin D3 is probably much higher than what is officially recommended for adults. Vieth R. J Steroid Biochem Mol Biol. 2004 May;89-90(1-5):575-9. https://www.ncbi.nlm.nih.gov/pubmed/15225842
The immunological functions of the vitamin D endocrine system. Hayes CE, Nashold FE, Spach KM, Pedersen LB. Cell Mol Biol (Noisy-le-grand). 2003 Mar;49(2):277-300. https://www.ncbi.nlm.nih.gov/pubmed/12887108
Effect of Vitamin D on Relapse-Free Survival in a Subgroup of Patients with p53 Protein-Positive Digestive Tract Cancer: A Post Hoc Analysis of the AMATERASU Trial. Akutsu T, Okada S, Hirooka S, Ikegami M, Ohdaira H, Suzuki Y, Urashima M. Cancer Epidemiol Biomarkers Prev. 2019 Dec 23. https://www.ncbi.nlm.nih.gov/pubmed/31871108
Vitamin D promotes the cisplatin sensitivity of oral squamous cell carcinoma by inhibiting LCN2-modulated NF-κB pathway activation through RPS3. Huang Z, Zhang Y, Li H, Zhou Y, Zhang Q, Chen R, Jin T, Hu K, Li S, Wang Y, Chen W, Huang Z. Cell Death Dis. 2019 Dec 9;10(12):936. https://www.ncbi.nlm.nih.gov/pubmed/31819048
25-Hydroxyvitamin D at time of breast cancer diagnosis and breast cancer survival. Kanstrup C, Teilum D, Rejnmark L, Bigaard JV, Eiken P, Kroman N, Tjønneland A, Mejdahl MK. Breast Cancer Res Treat. 2019 Nov 9. https://www.ncbi.nlm.nih.gov/pubmed/31707511
Meta-analysis of randomized controlled trials on vitamin D supplement and cancer incidence and mortality. Zhang X, Niu W. Biosci Rep. 2019 Nov 29;39(11). pii: BSR20190369. https://www.ncbi.nlm.nih.gov/pubmed/31696224
Negative Impact of 25-hydroxyvitamin D Deficiency on Breast Cancer Survival. Thanasitthichai S, Prasitthipayong A, Boonmark K, Purisa W, Guayraksa K. Asian Pac J Cancer Prev. 2019 Oct 1;20(10):3101-3106. https://www.ncbi.nlm.nih.gov/pubmed/31653160
25-Hydroxyvitamin D and Total Cancer Incidence and Mortality: A Meta-Analysis of Prospective Cohort Studies. Han J, Guo X, Yu X, Liu S, Cui X, Zhang B, Liang H. Nutrients. 2019 Sep 26;11(10). https://www.ncbi.nlm.nih.gov/pubmed/31561503
The effects of serum levels, and alterations in the genes of binding protein and receptor of vitamin D on gastric cancer. Durak Ş, Gheybi A, Demirkol Ş, Arıkan S, Zeybek ŞÜ, Akyüz F, Yaylım İ, Küçükhüseyin Ö. Mol Biol Rep. 2019 Dec;46(6):6413-6420. https://www.ncbi.nlm.nih.gov/pubmed/31549372
Plasma 25-Hydroxyvitamin D Levels and Survival in Patients with Advanced or Metastatic Colorectal Cancer: Findings from CALGB/SWOG 80405 (Alliance). Yuan C, Sato K, Hollis BW, Zhang S, Niedzwiecki D, Ou FS, Chang IW, O'Neil BH, Innocenti F, Lenz HJ, Blanke CD, Goldberg RM, Venook AP, Mayer RJ, Fuchs CS, Meyerhardt JA, Ng K. Clin Cancer Res. 2019 Dec 15;25(24):7497-7505. https://www.ncbi.nlm.nih.gov/pubmed/31548349
Serum 25-hydroxyvitamin D levels predict cancer survival: a prospective cohort with measurements prior to and at the time of cancer diagnosis. Robsahm TE, Tretli S, Torjesen PA, Babigumira R, Schwartz GG. Clin Epidemiol. 2019 Aug 8;11:695-705. https://www.ncbi.nlm.nih.gov/pubmed/31496824
24R,25-dihydroxyvitamin D3 modulates tumorigenicity in breast cancer in an estrogen receptor-dependent manner. Verma A, Schwartz Z, Boyan BD. Steroids. 2019 Oct;150:108447. https://www.ncbi.nlm.nih.gov/pubmed/31302113
The Synergistic Interplay between Vitamins D and K for Bone and Cardiovascular Health: A Narrative Review Adriana J. van Ballegooijen, Stefan Pilz, Andreas Tomaschitz, Martin R. Grübler, and Nicolas Verheyen. Int J Endocrinol. 2017; 2017: 7454376. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613455/
Is Vitamin D Harmful Without Vitamin K? Healthline https://www.healthline.com/nutrition/vitamin-d-and-vitamin-k#section2
Vitamin K. Oregon State University https://lpi.oregonstate.edu/mic/vitamins/vitamin-K
MITO LIFE
The effect of Pyrroloquinoline quinone and Resveratrol on the Survival and Regeneration of Cerebellar Granular Neurons. Shanan N, GhasemiGharagoz A, Abdel-Kader R, Breitinger HG. Neurosci Lett. 2019 Feb 16;694:192-197. https://www.ncbi.nlm.nih.gov/pubmed/30528876
Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. Harris CB, Chowanadisai W, Mishchuk DO, Satre MA, Slupsky CM, Rucker RB. J Nutr Biochem. 2013 Dec;24(12):2076-84. https://www.ncbi.nlm.nih.gov/pubmed/24231099
Apoptotic effect of pyrroloquinoline quinone on chondrosarcoma cells through activation of the mitochondrial caspase‑dependent and caspase‑independent pathways. Wu R, Pan J, Shen M, Xing C. Oncol Rep. 2018 Sep;40(3):1614-1620. https://www.ncbi.nlm.nih.gov/pubmed/30015942
Production and radioprotective effects of pyrroloquinoline quinone. Xiong XH, Zhao Y, Ge X, Yuan SJ, Wang JH, Zhi JJ, Yang YX, Du BH, Guo WJ, Wang SS, Yang DX, Zhang WC. Int J Mol Sci. 2011;12(12):8913-23. https://www.ncbi.nlm.nih.gov/pubmed/22272111
Pyrroloquinoline quinone attenuates cachexia-induced muscle atrophy via suppression of reactive oxygen species. Xu T1,2, Yang X1, Wu C2, Qiu J1, Fang Q1, Wang L1, Yu S1, Sun H1. J Thorac Dis. 2018 May;10(5):2752-2759. https://www.ncbi.nlm.nih.gov/pubmed/29997937
Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA, Rucker RB. J Biol Chem. 2010 Jan 1;285(1):142-52. https://www.ncbi.nlm.nih.gov/pubmed/19861415
Chronic Rhodiola rosea extract supplementation enforces exhaustive swimming tolerance. Lee FT, Kuo TY, Liou SY, Chien CT. Am J Chin Med. 2009;37(3):557-72. https://www.ncbi.nlm.nih.gov/pubmed/19606515
Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity. Panossian A, Wikman G. Curr Clin Pharmacol. 2009 Sep;4(3):198-219. https://www.ncbi.nlm.nih.gov/pubmed/19500070
Mitochondrial biogenesis and healthy aging. López-Lluch G, Irusta PM, Navas P, de Cabo R. Exp Gerontol. 2008 Sep;43(9):813-9. https://www.ncbi.nlm.nih.gov/pubmed/18662766
Pyrroloquinoline quinone preserves mitochondrial function and prevents oxidative injury in adult rat cardiac myocytes. Tao R, Karliner JS, Simonis U, Zheng J, Zhang J, Honbo N, Alano CC. Biochem Biophys Res Commun. 2007 Nov 16;363(2):257-62. https://www.ncbi.nlm.nih.gov/pubmed/17880922
Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury. Zhu BQ, Simonis U, Cecchini G, Zhou HZ, Li L, Teerlink JR, Karliner JS. J Cardiovasc Pharmacol Ther. 2006 Jun;11(2):119-28. https://www.ncbi.nlm.nih.gov/pubmed/16891289
Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. Stites T, Storms D, Bauerly K, Mah J, Harris C, Fascetti A, Rogers Q, Tchaparian E, Satre M, Rucker RB. J Nutr. 2006 Feb;136(2):390-6. https://www.ncbi.nlm.nih.gov/pubmed/16424117
Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer's disease, and Parkinson's disease. Liu J, Ames BN. Nutr Neurosci. 2005 Apr;8(2):67-89. https://www.ncbi.nlm.nih.gov/pubmed/16053240
Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Gleyzer N, Vercauteren K, Scarpulla RC. Mol Cell Biol. 2005 Feb;25(4):1354-66. https://www.ncbi.nlm.nih.gov/pubmed/15684387
Effect of extracts from Rhodiola rosea and Rhodiola crenulata (Crassulaceae) roots on ATP content in mitochondria of skeletal muscles. Abidov M, Crendal F, Grachev S, Seifulla R, Ziegenfuss T. Bull Exp Biol Med. 2003 Dec;136(6):585-7. https://www.ncbi.nlm.nih.gov/pubmed/15500079
Rhodiola rosea: a possible plant adaptogen. Kelly GS. Altern Med Rev. 2001 Jun;6(3):293-302. https://www.ncbi.nlm.nih.gov/pubmed/11410073
Synthesis of esters of coenzyme PQQ and IPQ, and stimulation of nerve growth factor production. Urakami T, Tanaka A, Yamaguchi K, Tsuji T, Niki E. Biofactors. 1995-1996;5(3):139-46. https://www.ncbi.nlm.nih.gov/pubmed/8922270
[The cardioprotective and antiadrenergic activity of an extract of Rhodiola rosea in stress]. Maslova LV, Kondrat'ev BIu, Maslov LN, Lishmanov IuB. Eksp Klin Farmakol. 1994 Nov-Dec;57(6):61-3. Russian. https://www.ncbi.nlm.nih.gov/pubmed/7756969
Stimulation of nerve growth factor production by pyrroloquinoline quinone and its derivatives in vitro and in vivo. Yamaguchi K, Sasano A, Urakami T, Tsuji T, Kondo K. Biosci Biotechnol Biochem. 1993 Jul;57(7):1231-3. https://www.ncbi.nlm.nih.gov/pubmed/7764070
Salidroside protects SH‑SY5Y from pathogenic α‑synuclein by promoting cell autophagy via mediation of mTOR/p70S6K signaling. Chen S, Cai F, Wang J, Yang Z, Gu C, Wang G, Mao G, Yan J. Mol Med Rep. 2019 Jul;20(1):529-538. https://www.ncbi.nlm.nih.gov/pubmed/31180515
[Ethanol extract of Rhodiola rosea L. regulates the number of tumor infiltrating T cells to enhance antitumor effect in Lewis lung cancer-bearing mice]. Zhang Y, Zhang X, Yue Q, Wen Z, Zhang M. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2019 Feb;35(2):103-108. [Article in Chinese]. https://www.ncbi.nlm.nih.gov/pubmed/30975273
Neuroprotective effects of a Rhodiola crenulata extract on amyloid-β peptides (Aβ1-42) -induced cognitive deficits in rat models of Alzheimer's disease. Zhang X, Wang X, Hu X, Chu X, Li X, Han F. 2019 Apr;57:331-338. https://www.ncbi.nlm.nih.gov/pubmed/30807987
Adaptogens in chemobrain (Part III): Antitoxic effects of plant extracts towards cancer chemotherapy-induced toxicity - transcriptome-wide microarray analysis of neuroglia cells. Seo EJ, Klauck SM, Efferth T, Panossian A. Phytomedicine. 2019 Mar 15;56:246-260. https://www.ncbi.nlm.nih.gov/pubmed/30668345
Salidroside prevents skin carcinogenesis induced by DMBA/TPA in a mouse model through suppression of inflammation and promotion of apoptosis. Kong YH, Xu SP. Oncol Rep. 2018 Jun;39(6):2513-2526. https://www.ncbi.nlm.nih.gov/pubmed/29693192
Salidroside induces apoptosis in human ovarian cancer SKOV3 and A2780 cells through the p53 signaling pathway. Yu G, Li N, Zhao Y, Wang W, Feng XL. Oncol Lett. 2018 May;15(5):6513-6518. https://www.ncbi.nlm.nih.gov/pubmed/29616120
Inhibiting ROS-TFEB-Dependent Autophagy Enhances Salidroside-Induced Apoptosis in Human Chondrosarcoma Cells. Zeng W, Xiao T, Cai A, Cai W, Liu H, Liu J, Li J, Tan M, Xie L, Liu Y, Yang X, Long Y. Cell Physiol Biochem. 2017;43(4):1487-1502. https://www.ncbi.nlm.nih.gov/pubmed/29035891
Salidroside, a Chemopreventive Glycoside, Diminishes Cytotoxic Effect of Cisplatin in Vitro. Zduriencikova M, Cholujova D, Duraj J, Mastihubova M, Mastihuba V, Karnisova Potocka E, Galova E, Sevcovicova A, Klapakova M, Horvathova E. Basic Clin Pharmacol Toxicol. 2018 Mar;122(3):346-354. https://www.ncbi.nlm.nih.gov/pubmed/28889522
Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway. Fan XJ, Wang Y, Wang L, Zhu M. Oncol Rep. 2016 Dec;36(6):3559-3567. https://www.ncbi.nlm.nih.gov/pubmed/27748934
Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signaling. Chen X, Wu Y1, Yang T, Wei M, Wang Y, Deng X, Shen C, Li W, Zhang H, Xu W, Gou L, Zeng Y, Zhang Y, Wang Z, Yang J. J Cachexia Sarcopenia Muscle. 2016 May;7(2):225-32. https://www.ncbi.nlm.nih.gov/pubmed/27493875
Salidroside, a Bioactive Compound of Rhodiola Rosea, Ameliorates Memory and Emotional Behavior in Adult Mice. Palmeri A, Mammana L, Tropea MR, Gulisano W, Puzzo D. J Alzheimers Dis. 2016 Feb 26;52(1):65-75. https://www.ncbi.nlm.nih.gov/pubmed/26967223
The Effects of Rhodiola rosea L. Extract on Anxiety, Stress, Cognition and Other Mood Symptoms. Cropley M, Banks AP, Boyle J. Phytother Res. 2015 Dec;29(12):1934-9. https://www.ncbi.nlm.nih.gov/pubmed/26502953
Rhodiola crenulata inhibits Wnt/β-catenin signaling in glioblastoma. Mora MC, Bassa LM, Wong KE, Tirabassi MV, Arenas RB, Schneider SS. J Surg Res. 2015 Aug;197(2):247-55. https://www.ncbi.nlm.nih.gov/pubmed/25998182
Salidroside inhibits the growth of human breast cancer in vitro and in vivo. Zhao G, Shi A, Fan Z, Du Y. Oncol Rep. 2015 May;33(5):2553-60. https://www.ncbi.nlm.nih.gov/pubmed/25814002
MITO CELL
Association of mitochondrial dysfunction and fatigue: A review of the literature Kristin Filler, Debra Lyon, James Bennett, Nancy McCain, Ronald Elswick, Nada Lukkahatai, and Leorey N. Saligan BBA Clin. 2014 Jun; 1: 12–23. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136529/
Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Nicolson GL. Altern Ther Health Med. 2014 Winter;20 Suppl 1:18-25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566449/
Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Clin Nutr. 2019 Jun;38(3):982-995. https://pubmed.ncbi.nlm.nih.gov/30201141/
Skeletal muscle atrophy and dysfunction in breast cancer patients: role for chemotherapy-derived oxidant stress. Blas A. Guigni, Damien M. Callahan, Timothy W. Tourville, Mark S. Miller, Brad Fiske, Thomas Voigt, Bethany Korwin-Mihavics, Vikas Anathy, Kim Dittus, Michael J. Toth. American Journal of Physiology-Cell Physiology, 2018. https://pubmed.ncbi.nlm.nih.gov/30207784/
Reversing mitochondrial dysfunction, fatigue and the adverse effects of chemotherapy of metastatic disease by molecular replacement therapy. Garth L. Nicolson, Kenneth A. Conklin; Clin Exp Metastasis (2008) 25:161–169 https://pubmed.ncbi.nlm.nih.gov/18058028/
Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). Annalisa Canta, Eleonora Pozzi, and Valentina Alda Carozzi; Toxics. 2015 Jun; 3(2): 198–223. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634687/
Expression of mitochondrial dysfunction-related genes and pathways in paclitaxel-induced peripheral neuropathy in breast cancer survivors. Kober KM, Olshen A, Conley YP, Schumacher M, Topp K, Smoot B, Mazor M, Chesney M, Hammer M, Paul SM, Levine JD, Miaskowski C. Mol Pain. 2018 Jan-Dec;14:1744806918816462. https://pubmed.ncbi.nlm.nih.gov/30426838/
Coenzyme Q10 for prevention of anthracycline-induced cardiotoxicity. Conklin KA. Integr Cancer Ther. 2005; 4(2):110-30. https://pubmed.ncbi.nlm.nih.gov/15911925/
Partial and complete regression of breast cancer in patients in relation to dosage of coenzyme Q10. K Lockwood , S Moesgaard, K Folkers. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1504-8. https://pubmed.ncbi.nlm.nih.gov/7908519/
Advanced Nutrition and Human Metabolism (with InfoTrac) by Sareen S. Gropper 4th Edition. (April 16, 2004) ISBN: 0534559867: Wadsworth Press
Textbook of Biochemistry with Clinical Correlations by Devlin 6th Edition: ISBN: 04716780822.
Food and Nutrients in Disease Management by Ingrid Kohlstadt. CRC Press ISNB: 978-1- 4200-6762-0.
Resveratrol improves health and survival of mice on a high-calorie diet. Baur JA, Pearson KJ, Price NL, et al. Nature. 2006 Nov 16;444(7117):337-42. https://pubmed.ncbi.nlm.nih.gov/17086191/
Therapeutic potential of resveratrol: the in vivo evidence. Baur JA, Sinclair DA. Nat Rev Drug Discov. 2006 Jun;5(6):493-506. https://pubmed.ncbi.nlm.nih.gov/16732220/
Antitumor effect of resveratrol on chondrosarcoma cells via phosphoinositide 3-kinase/AKT and p38 mitogen-activated protein kinase pathways. Zixun Dai, Pengfei Lei, Jie Xie, Yihe Hu; Molecular Medicine Reports. August 2015 Volume 12 Issue 2. https://www.spandidos-publications.com/10.3892/mmr.2015.3683
Molecular Mechanisms of Resveratrol Action in Lung Cancer Cells Using Dual Protein and Microarray Analyses. Lorna Whyte, Yuan-Yen Huang, Karen Torres, and Rajendra G. Mehta. Cancer Res 2007; 67: (24). December 15, 2007. https://cancerres.aacrjournals.org/content/67/24/12007
Diminution of singlet oxygen-induced DNA damage by curcumin and related antioxidants. Subramanian M, Sreejayan, Rao MN, Devasagayam TP, Singh BB. Mutat Res. 1994 Dec 1;311(2):249-55. https://pubmed.ncbi.nlm.nih.gov/7526190/
Biological activities of Curcuma longa L. Araújo CC, Leon LL. Mem Inst Oswaldo Cruz. 2001 Jul;96(5):723-8. https://pubmed.ncbi.nlm.nih.gov/11500779/
Effects of oral L-carnitine supplementation on in vivo long-chain fatty acid oxidation in healthy adults. Müller DM, Seim H, Kiess W, Löster H, Richter T. Metabolism. 2002 Nov;51(11):1389-91. https://pubmed.ncbi.nlm.nih.gov/12404185/
L-Carnitine: therapeutic applications of a conditionally-essential amino acid. Kelly GS. Altern Med Rev. 1998 Oct;3(5):345-60. https://pubmed.ncbi.nlm.nih.gov/9804680/
Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Shults CW, Oakes D, Kieburtz K, Beal MF, et al. Arch Neurol. 2002 Oct;59(10):1541-50. https://pubmed.ncbi.nlm.nih.gov/12374491/
Fatigue in chronically ill patients. Harris JD. Curr Opin Support Palliat Care. 2008 Sep;2(3):180-6. Review.PMID: 18685418. https://pubmed.ncbi.nlm.nih.gov/18685418/
Textbook of Natural Medicine (2nd Ed.), Pizzorno JE, Murray MT. Churchill Livingstone, New York, 1999.
Complimentary & Alternative Medicines: Professional’s Handbook. Fetrow CW, Avila JR. Springhouse, Springhouse, PA, 1999.
Botanical Influences on Illness: A sourcebook of clinical research. Werbach MR, Murray, MT. Third Line Press, Tarzana, California, 1994.
Incorporating Herbal Medicine Into Clinical Practice. Bascom A. F.A. Davis Co., Philadelphia, 15.
Encyclopedia of Herbal Medicine. Cheallier A. Dorling Kindersley, London, 2000.
Pharmacognosy and Pharmacobiotechnology. Robbers JE, Speedie MK, Tyler VE. Williams & Wilkins, Baltimore, 1996.
PDR for Nutritional Supplements, 1st Ed. Medical Economics/Thompson Healthcare, 2001.
PDR for Herbal Medicines, 1st Ed. Medical Economics/Thompson Healthcare, 1998.
The mitochondrial cocktail: rationale for combined nutraceutical therapy in mitochondrial cytopathies.Tarnopolsky MA. Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1561-7. https://pubmed.ncbi.nlm.nih.gov/18647623/
Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Rodriguez MC, MacDonald JR, Mahoney DJ, et al. Muscle Nerve. 2007 Feb;35(2):235-42. https://pubmed.ncbi.nlm.nih.gov/17080429/
R-alpha-lipoic acid and acetyl-L-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Shen W, Liu K, Tian C, et al. Diabetologia. 2008 Jan;51(1):165-74. https://pubmed.ncbi.nlm.nih.gov/18026715/
Aging skin is functionally anaerobic: importance of coenzyme Q10 for anti aging skin care. Prahl S, Kueper T, Biernoth T, et al. Biofactors. 2008;32(1-4):245-55. https://pubmed.ncbi.nlm.nih.gov/19096122/
Antifatigue effect of coenzyme Q10 in mice. Fu X, Ji R, Dam J. J Med Food. 2010 Feb;13(1):211-5. https://pubmed.ncbi.nlm.nih.gov/20136457/
Curcumin Synergizes With Resveratrol to Inhibit Colon Cancer. Adhip P N Majumdar, Sanjeev Banerjee, Jyoti Nautiyal, Bhaumik B Patel, Vaishali Patel, Jianhua Du, Yingjie Yu, Althea A Elliott, Edi Levi, Fazlul H Sarkar. Nutr Cancer 2009;61(4):544-53. https://pubmed.ncbi.nlm.nih.gov/19838927/
N-ACETYL-CYSTEINE
Protective effects of N-acetyl-cysteine in mitochondria bioenergetics, oxidative stress, dynamics and S-glutathionylation alterations in acute kidney damage induced by folic acid. Aparicio-Trejo OE, Reyes-Fermín LM, Briones-Herrera A, Tapia E, León-Contreras JC, Hernández-Pando R, Sánchez-Lozada LG, Pedraza-Chaverri J. Free Radic Biol Med. 2019 Jan;130:379-396. https://www.ncbi.nlm.nih.gov/pubmed/30439416
A Review on Various Uses of N-Acetyl Cysteine, Vida Mokhtari, M.Sc, Parvaneh Afsharian, Ph.D, Maryam Shahhoseini, Ph.D, Seyed Mehdi Kalantar, Ph.D, and Ashraf Moini, M.D, Cell J. 2017 Apr-Jun; 19(1): 11–17. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241507/
N-acetylcysteine improves antitumoural response of Interferon alpha by NF-kB downregulation in liver cancer cells. Nelson Alexandre Kretzmann, Eduardo Chiela, Ursula Matte, Norma Marroni, and Claudio Augusto Marroni. Comp Hepatol. 2012; 11: 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539937/
N-acetylcysteine: multiple clinical applications. Millea PJ. Am Fam Physician. 2009 Aug 1;80(3):265-9. https://www.ncbi.nlm.nih.gov/pubmed/19621836
The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. Kerksick C, Willoughby D. J Int Soc Sports Nutr. 2005 Dec 9;2:38-44. https://www.ncbi.nlm.nih.gov/pubmed/18500954
Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Rushworth GF, Megson IL. Pharmacol Ther. 2014 Feb;141(2):150-9. https://www.ncbi.nlm.nih.gov/pubmed/24080471
29 NAC Benefits & Uses (N-Acetyl Cysteine). Ana Aleksic, MSc (Pharmacy). Selfhacked. January 8, 2020 https://content.selfdecode.com/nac-top-43-science-based-health-benefits-n-acetyl-cysteine-nac/
NAC Benefits: Helps Lung Problems, Addictions, Autism, Bipolar, and More. University Health News. Aug. 5, 2019 by UHN Staff. https://universityhealthnews.com/daily/nutrition/nac-benefits-helps-lung-problems-addictions-autism-bipolar-and-more/
N-acetyl-L-cysteine exhibits antitumoral activity by increasing tumor necrosis factor alpha-dependent T-cell cytotoxicity. Delneste Y, Jeannin P, Potier L, Romero P, Bonnefoy JY. Blood. 1997 Aug 1;90(3):1124-32. https://www.ncbi.nlm.nih.gov/pubmed/9242544
N-acetyl cysteine inhibits human signet ring cell gastric cancer cell line (SJ-89) cell growth by inducing apoptosis and DNA synthesis arrest. Li J, Tu HJ, Li J, Dai G, Dai YC, Wu Q, Shi QZ, Cao Q, Li ZJ. Eur J Gastroenterol Hepatol. 2007 Sep;19(9):769-74. https://www.ncbi.nlm.nih.gov/pubmed/17700262
N-acetylcysteine decreases malignant characteristics of glioblastoma cells by inhibiting Notch2 signaling. Deng J, Liu AD, Hou GQ, Zhang X, Ren K, Chen XZ, Li SSC, Wu YS, Cao X. J Exp Clin Cancer Res. 2019 Jan 3;38(1):2. https://www.ncbi.nlm.nih.gov/pubmed/30606241
N-acetylcysteine. Altern Med Rev. 2000 Oct;5(5):467-71. https://www.ncbi.nlm.nih.gov/pubmed/11056417
N-acetyl cysteine inhibits cell cycle progression in pancreatic carcinoma cells. Kusano C, Takao S, Noma H, Yoh H, Aikou T, Okumura H, Akiyama S, Kawamura M, Makino M, Baba M. Hum Cell. 2000 Dec;13(4):213-20. https://www.ncbi.nlm.nih.gov/pubmed/11329937
Antimetastatic potential of N-acetylcysteine on human prostate cancer cells. Supabphol A, Supabphol R. J Med Assoc Thai. 2012 Dec;95 Suppl 12:S56-62. https://www.ncbi.nlm.nih.gov/pubmed/23513466
N-acetylcysteine for lung cancer prevention. van Zandwijk N. Chest. 1995 May;107(5):1437-41. https://www.ncbi.nlm.nih.gov/pubmed/7750344
N-acetylcysteine inhibits proliferation, adhesion, migration and invasion of human bladder cancer cells. Supabphol A, Muangman V, Chavasiri W, Supabphol R, Gritsanapan W. J Med Assoc Thai. 2009 Sep;92(9):1171-7. https://www.ncbi.nlm.nih.gov/pubmed/19772176
The role of the thiol N-acetylcysteine in the prevention of tumor invasion and angiogenesis. Morini M, Cai T, Aluigi MG, Noonan DM, Masiello L, De Flora S, D'Agostini F, Albini A, Fassina G. Int J Biol Markers. 1999 Oct-Dec;14(4):268-71. https://www.ncbi.nlm.nih.gov/pubmed/10669958
Resveratrol and N-acetylcysteine block the cancer-initiating step in MCF-10F cells. Zahid M, Saeed M, Beseler C, Rogan EG, Cavalieri EL. Free Radic Biol Med. 2011 Jan 1;50(1):78-85. https://www.ncbi.nlm.nih.gov/pubmed/20934508
Chemopreventive properties and mechanisms of N-Acetylcysteine. The experimental background. De Flora S, Cesarone CF, Balansky RM, Albini A, D'Agostini F, Bennicelli C, Bagnasco M, Camoirano A, Scatolini L, Rovida A, et al. J Cell Biochem Suppl. 1995;22:33-41. https://www.ncbi.nlm.nih.gov/pubmed/8538208